Curcuma aeruginosa Roxb.

Last updated: 19 May 2016

Scientific Name

Curcuma aeruginosa Roxb. 


No documentation.

Vernacular Name

Malaysia Temu hitam, [1] temu erang, [2][3] temu ireng [4]
English Black ginger, hidden lily, pink and blue ginger, [4] aeruginous turmeric rhizome, [5] rhizome zedoariae [6]
China Ngo suk, [5] ezhu [6]
India Karimanjal, neelakua [4]
Indonesia Konèng hideung, [1] temo erang, temu leteng, [2][3] temu koneng [5], temu ireng, temu hitam [7][8], temu lotong, tamu hitam [9]
Thailand Kha min dam, kra-jeaw, [4] waan mahaamek [10]
Vietnam Nghê den, nghê xanh, ngai tím, [4] ngh[eej]ten d[oof]ng [10].

Geographical Distributions

Curcuma aeruginosa is native to Myanmar and distribute to other tropical region; Cambodia, Indochina, and Java. [9]

Botanical Description

C. aeruginosa is a member of the Zingiberaceae family. [11]

The leaves shoot measure more than 100 cm tall. Leaf-blades have wide brownish suffusion on either side of the midrib on the distal half only. The blades measure 45 cm x 16 cm to 80 cm x 20 cm, with petiole measuring from 0-17 cm long. [11]

The inflorescence appears separate from the leaf shoot with scape 20-50 cm tall, enclosed by 2 or 3 long sheaths. The spike is 14-18 cm tall and 6-8 cm wide with the coma-bract purple in colour and the lower ones streaked with green. [11]

The flowering bracts are light green. The upper ones are tipped purple. The corolla-lobes and tubes are deep crimson-pink, staminodes and lip pale yellow, median band on lip deep yellow; anther spurs are of medium length. [11]

The rhizome is about 16 cm long and 3 cm thick, with grey shining exterior and pink tips. The inside is bluish or blue-green in colour with a white cortex. The root-tubers are large and numerous, on short roots. [11]



No documentation.

482figa   482figb  482figc
 (a)  (b)  (c)
 Figure 1: Curcuma aeruginosa (a) whole plant, (b) leaf and (c-d) rhizome. (Photo courtesy of Mohd Sayuti, UKM, 2015)


Chemical Constituent

The rhizome of C. aeruginosa was found to contain curcuminoids curcumin, demethoxycurcumin, and bis-demethoxycurcumin. [12]

The essential oil of C. aeruginosa was found to contain cycloisolongifolene, 8,9-dehydro formyl (35.29%) and dihydrocostunolide. [13]

Hexane extract of C. aeruginosa rhizome was found to contain sesquiterpenes (e.g. germacrone, zederone, dehydrocurdione, curcumenol, zedoarondiol, isocurcumenol). [14]

The crude chloroform extract of C. aeruginosa was found to contain three sesquiterpenes namely curcumenol, zedoarol, and isocurcumenol and phytosterol mixtures containing stigmasterol and α-sitosterol. [15]

Methanol extract of C. aeruginosa was found to contain guaine sesquiterpene lactones (e.g. zedoalactone A, zedoalactone B, zedoarondiol). [16]

Chloroform extract of C. aeruginosa was found to contain sesquiterpene (e.g. isocurcumenol). [17]

Petroleum ether extract of C. aeruginosa was found to contain sesquiterpenes (e.g. zedoarol, curcumenol). [17]

The essential oils of C. aeruginosa rhizomes has been found to contain monoterpenoids (e.g. isoborneol, α-pinene, sabinene,α-terpene, camphor, borneol, tumerone, ar-tumerone,  zerumbone, terpinen-4-ol, furanodienone, camphene, α-terpineol, β-pinene, carvone, curcumenol, myrcene, isocurcumenol, 1,8-cineole, α-selinene, β-selinene, linalool, mycrene, limonene, β-bisabolene, δ-cadinene, β-sesquiphellandrene, curzerene, T-cadinol, T-muurolol, α-cadinol, epicurzerenone, 3-carene, 2-thujene,epi-bicyclosesquiphellandrene), caryophyllane-type sesquiterpenoids (e.g. caryophyllene, β-caryophyllene, caryophyllene oxide, β-caryophyllene oxide), germacrane-type sesquiterpenoids (e.g. germacrone, germacrene D, germacrene B, germacrone, 8,9-β-dimethyl-4α,9β-dihydrodibenzo[b,d]furan-3(4h)-one, isofuranogermacrene), elemane-type sesquiterpenoids(e.g. β-elemene, α-elemene, δ-elemene), sesquiterpenoids (e.g. humulene, β-farnesene, (Z)-α-farnesene, (Z)-β-farnesene, β-cubebene, ar-curcumene) and other substances (e.g. eucalyptol; L-camphor; eudesma-4(14),11-diene; α-bulnesene; cycloisolongifolene, 8,9-dehydro-9-formyl; alloaromadendrene oxide-(2); dihydrocostunolide; velleral; zedoarol; 2-nonanone; 2-undecanone; myrtenol; trans-pinocarveol; acetophenone; propiolic acid, 3-(1-hydroxy)-2-isopropyl-1,5-methylcyclohexyl); 4-oxo-β-isodamascol; methenolone; labd-13-en-15-oic acid,8,12-epoxy-12-hydroxy-γ-lactone; cholesta-22,24-dien-5-ol-4,4-dimethyl-; β-sitosterol; heptan-2-ol; tricyclene; ρ-cymene; nonan-2-ol; linalol; ρ-cymene-4-ol; undecan-2-one; undecan-2-ol; α-guajene; selina-3,7(11)-diene, β-eudesmol, humuladienone, curdione, curcumanolides A and B; dehydrocurdione; curcumenone; oxalic acid, bis(trimethylsilyl) ester;  malonic acid bis(trimethylsilyl) ester; butanoic acid, 4-[(trimethylsilyl)oxy]-, trimethylsilyl ester; L-alanine, N-octanyl-ethyl ester; butanedioic acid, [(trimethylsilyl) oxy]-, bis(trimethylsilyl) ester; citric acid, ethyl ester, tri-trimethylsilyl; isocitric acid (trimethylsilyl); D-fructose-1,3,4,5,6-pentakis-O-(trimethylsilyl)-O-methyloxime; D-glucose-2,3,4,5,6-pentakis-O-(trimethylsilyl)-O-methyloxime; hexadecanoic acid, trimethylsilyl ester; myo-inositol,1,2,3,4,5,6-hexakis-O-(trimethylsilyl); 4,4-dimethyl-N-(2-phenylethyl)-5α-androst-2-en-17-amine; stearic acid, trimethylsilyl ester; tetracosane; 17-hydroxy-3,20-dioxopregna-1,4,9(11)-trien-21-yl acetate;  triacontane;  tetratriacontane; α-D-glucopyranoside-1,3,4,6-tetrakis-O-(trimethylsilyl)-β-D-fructofuranosyl-2,3,4,6-tetrakis-O-(trimethylsilyl); 3-methyl cyclopentane-1-yl-trimethylsilyl ether; thiosalicylic acid OS-di-trimethylsilyl-; butane-1,3-diol; 1-methylene-3-methyl-,bis(trimethylsilyl)ether; glycine, N-(trimethylsilyl)-, trimethylsilyl ester; borneol-trimethylsilyl ether, phenylethanolamine; tris (trimethylsilyl) phosphate; (2,6-ditert-butylphenoxy)(trimethyl) silane; formic acid, 2-bro,omethyl-4, 4-dimethyl-3-(3-oxobut-1-enyl)cyclohex-2-enyl ester; germacra-1(10),4-diene-12-oic acid 6-α-hydroxy gamma lactone; propiolic acid, 3-(1-hydroxy-2-isopropyl-5-methylcyclohexyl); androst-4-en-17-one,3,16, bis(trimethylsilyl) oxy))-3α; 2-isopropenyl-2,3-dihydro-7H-furo (3,2-g) chromen-7-one; pregna-1,4,16-triene-3,20-dione,11,22-diacetoxy-; heptadecanoic acid, trimethylsilyl ester; linoleic acid, trimethylsilyl ester; oleic acid, trimethylsilyl ester; 4α-methylandrostane-2,3-diol-17-dione; anthiaergostan-5,7,9,22-tetraen-14-ol-15-one; 19-norpregn-4-en-20-yn-3-one, 17-(trimethylsilyl)oxy; androst-5-en-17-one,3,16-bis[(trimethylsilyl)oxy)],(O-methyloxime,(3β, 16α)). [13][18][19][20][21][22][23][24]

Plant Part Used

Rhizomes. [5]

Traditional Use

The rhizome of C. aeruginosa is traditionally used to treat rheumatism, contusions and irregular menstruation [2]. In Indonesia C. aeruginosa is used to treat piles, gonorrhoea, antidote to poisons, prolapsed uterus, and to prevent spread of diseases in infants through mother’s milk [4]. In Indochina it is used in the treatment of colic and as antiflatulent [25].

It is also reported as one of the numerous ingredients in Singaporean universal tonic or ‘ubat jamu’ and prescribes for cough and asthma. Pounded rhizomes in coconut oil are applied externally for scurf and to treat mental derangements [1]. Besides that, Malays also use this plant to treat colic, scurvy and pruritus [26].

Preclinical Data


Antimicrobial activity

The essential oil extracted from the rhizome of C. aeruginosa exhibited promising antibacterial activity and contains cycloisolongifolene, 8,9-dehydro formyl (35.29%) and dihydrocostunolide (22.51%) compounds. This oil showed moderate antimicrobial activity when tested using disc diffusion method against bacteria and fungi for zone of inhibition compared to tetracycline (Tet) or nystatin (Nys) as a positive control for the following microbes: Bacillus cereus (9.3±0.4 mm; Tet: 22.5±0.7 mm), Staphylococcus aureus (7.0±0.0 mm; Tet: 17.0±0.0 mm), Escherichia coli (no inbition; Tet: 13.3±0.4 mm), and Pseudomonas aeruginosa (7.5±0.0 mm; Tet: 23.0±0.0 mm), Candida albicans (7.0±0.0 mm; Nys: 10.3±0.4 mm) and Cyptococcus neoformans (8.8±0.4 mm; Nys: 18.0±0.0 mm). [13]

Anti-androgenic activity

Hexane extract of C. aeruginosa dried powdered rhizomes and germacrone isolated from the extract inhibited the conversion of testosterone to dihydrotestosterone (DHT) with IC50 values of 0.22 ± 0.03 and 0.42 ± 0.05 µg/mL, respectively, compared to the positive control, ethinylestradiol (0.26 ± 0.02 µg/mL) using rat liver enzyme test. [14]

Germacrone isolated from C. aeruginosa dried powdered rhizomes (3, 30 and 100 µg) was applied to flank glands of androgen-stimulated growth male Syrian golden hamster for 4 weeks. The compound showed significant (p < 0.05) increase in change of flank gland size (1.6 ± 2.7 – 1.9 ± 0.8 mm) compared to testosterone treated group (9.0 ± 1.8 mm). [14]

Cytotoxicity activity

Germacrone isolated from C. aeruginosa dried powdered rhizomes (10 µg/mL) showed significant (p < 0.05) decrease in cell viability on human prostate cancer cells (LNCaP cell) (70%) compared to vehicle control group (100%). [14]

Antioxidant activity

The crude extract and two isolated compounds (curcumenol and isocurcumenol) from the rhizome of C. aeruginosa exhibit antioxidant activities [8]. The rhizome also showed significant superoxide dismutase (SOD) activity, which is an antioxidant enzyme that catalyze the disproportionation of the harmful superoxide anionic radical to hydrogen peroxide and molecular oxygen. [27]

Uterine relaxant activity

The chloroform and methanol extracts of C. aerugenosa proved to have inhibitory effects on the contraction of rat uterine muscles induced by oxytocin, prostaglandin F2, and acetylcholine. This activity may be partly due to their ability to interrupt the influx of Ca2+ through voltage-gated L-type calcium channels. The methanol extract however, could also reduce the contraction of oxyticin in Ca2+ free ethylenediamine tetraacetic acid (EDTA) solution suggesting the possibility of intracellular mechanism being involved. [28]

Anti-PAF activity (Platelet-activating factor)

The methanol extract of the rhizome of C. aeruginosa was amongst the 37 species of Malaysian medicinal plants that showed strong inhibitory effects on platelet-activating factor binding to rabbit platelet with 75.4 % inhibition and IC50 value of 5.8 µg/mL. [29]

Anti-thrombocytopenia activity

Ethanol extract of C. aeruginosa dried rhizomes (250 and 500 mg/kg body weight) was administered orally to heparininducedthrombocytopenia male Wistar rats (150-250 g) for seven days. The extract increased the number of thrombocytes (250 mg/kg: 24.72%; 500 mg/kg: 26.95%), erythrocytes (250 mg/kg: 4.52%; 500 mg/kg: 9.53%) and hematocrits level (250 mg/kg: 2.28%; 500 mg/kg: 8.19%). [30]

Antinociceptive activity

Chloroform extract of C. aeruginosa dried rhizomes (400 mg/kg) administered orally to male Swiss mice (30 – 38 g) 30 min before induction of abdominal constriction using acetic acid significantly (p < 0.05) decreased the number of writhing by 10.7 ± 3.8 counts/20 min compared to positive control, aspirin (200 mg/kg) (9.6 ± 2.6 counts/20 min). [31]

Chloroform extract of C. aeruginosa dried rhizomes (400 mg/kg) administered to male Wistar rats (150 – 220 g) 30 min after induction of pain using formalin significantly (p < 0.05) decreased the licking activity in the late phase by 7.41 ± 4.24 sec compared to positive control, aspirin (200 mg/kg) (9.89 ± 16.83 sec). [31]


No documentation.

Clinical Data

Clinical findings

Hair growth stimulant activity

A randomized clinical trial was done to 87 men with androgenetic alopecia (AGA) to study the effects of 5% hexane extract of C. aeruginosa (source of natural 5a-reductase inhibitor) and 5% minoxidil on male pattern baldness. The 5% hexane extract and 5% minoxidil together with the combination of both formulations were applied twice daily for six months and compared with placebo. The results showed that the combination formulation was more effective than individual drug in effecting significant (p = 0.008) overall hair regrowth activity, global photographic review (p < 0.001), and hair shedding (p = 0.004). The drugs slowed hair loss while at the same time increased hair growth. [32]


No documentation.

Poisonous Management

No documentation.

Line drawing

No documentation.


  1. Burkill IH. A dictionary of the economic products of the Malay Peninsula. Volume 1. London: Published on behalf of the governments of the Straits settlements and Federated Malay states by the Crown agents for the colonies, 1935; p. 705-706.
  2. Hembing HMW. Atasi asam urat & rematic ala Hembing. Jakarta: Puspa Swara, 2007; p. 47.
  3. Fauziah M. Tanaman obat keluarga. Jakarta: Niaga Swadaya, 2007; p. 75.
  4. Hariana HA. Tumbuhan obat dan khasiatnya. Jakarta: Niaga Swadaya, 2008; p. 129.
  5. Lim TK. Edible medicinal and non-medicinal plants: Volume 12 modified stems, roots, bulbs. Switzerland: Springer International Publishing, 2016; p. 233-240.
  6. Liu Z. Essentials of Chinese medicine. Springer Science & Business Media, 2011; p. 241.
  7. Quattrocchi U. CRC world dictionary of plant names: Common names, scientific names, eponyms, synonyms, and etymology. Volume II C-D. Boca Raton, Forida: CRC Press, 2012; p. 540.
  8. Arifin N. Penyembuhan semula jadi dengan herba. Kuala Lumpur: PTS Litera Utama, 2005; p. 234–235.
  9. Santoso HB. Ragam & khasiat tanaman obat. Jakarta: AgroMedia Pustaka, 2008; p.124
  10. Wardini TH, Prakoso B. Curcuma aeruginosa Roxb. In: de Padua LS, Bunyapraphatsara N, Lemmens RHMJ, editors. Plant Resources of South-East Asia No. 12(1): Medicinal and poisonous plants 1. Leiden, Netherlands: Backhuys Publisher, 1999; p. 214-215.
  11. Holttum RE. The zingiberaceae of the Malay Peninsula. Garden’s bulletin. Volume 13. Singapore: The Botanic Gardens, 1930; p. 70-71.
  12. Bos R, Windono T, Woerdenbag HJ, Boersma YL, Koulman A, Kayser O. HPLC-photodiode array detection analysis of curcuminoids in Curcuma species indigenous to Indonesia. Phytochem Anal. 2007;18(2):118-122.
  13. Kamazeri TS, Samah OA, Taher M, Susanti D, Qaralleh H. Antimicrobial activity and essential oils of Curcuma aeruginosa, Curcuma mangga, and Zingiber cassumunar from Malaysia. Asian Pac J Trop Med. 2012;5(3):202-209.
  14. Suphrom N, Pumthong G, Khorana N, Waranuch N, Limpeanchob N, Ingkaninan K. Anti-androgenic effect of sesquiterpenes isolated from the rhizomes of Curcuma aeruginosa Roxb. Fitoterapia. 2012;83(5):864-871.
  15. Md Saad S. Phytochemical constituents and biological activity of Curcuma aeruginosa Roxb., C. ochrorhiza Val.and Andrographis asculata Nees [unpublishied thesis]. Faculty of Science, Universiti Putra Malaysia; 2006.
  16. Takano I, Yasuda I, Takeya K, Itokawa H. Guaiane sesquiterpene lactones from Curcuma aeruginosa. Phytochemistry. 1995;40(4):1197-1200.
  17. Mohd Aspollah HS, Suhaila MS, Nordin HL, et al. Chemical constituents and bioactivity of Curcuma aeruginosa Roxb. Nat Prod Sci. 2007;13(3):175-179.
  18. Srivastava S, Chitranshi N, Srivastava S, Dan M, Rawat AKS, Pushpangadan P. Pharmacognostic evaluation of Curcuma aeruginosa Roxb. Nat Prod Sci. 2006;12(3):162-165.
  19. Sirat HM, Jamil S, Hussain J. Essential oil of Curcuma aeruginosa Roxb. From Malaysia. J Essent Oil Res. 1998;10(4):453-458.
  20. Jarikasem S, Thubthimthed S, Chawananoraseth K, Suntorntanasat T. Essential oils from three Curcuma species collected in Thailand. Acta Hort. 2005;37-40.
  21. Simoh S, Zainal A. Chemical profiling of Curcuma aeruginosa Roxb. rhizome using different techniques of solvent extraction. Asian Pac J Trop Biomed. 2015;5(5):412-417.
  22. Aromdee C, Polrat S, Wangsomnuek P. Constituents of the rhizome of Curcuma aeruginosa and its DNA fingerprint. Int J Phytomed. 2011;31:98-203.
  23. Zwaving JH, Bos R. Analysis of the essential oil of five Curcuma species. Flavour Frag J. 1992;7(1):19-22.
  24. Ibrahim J, Abu Said A, Nor Azah MA, Abdul Rashih A, Halijah I. Chemical composition of the rhizome oils of four Curcuma species from Malaysia. J Essent Oil Res. 1999; 11(6):719-723.
  25. Muhlisah F. Tanaman obat keluarga. Jakarta: Penebar Swadaya, 2007; p. 75.
  26. Herbal Medicine Research Centre, Institute for Medical Research. Compendium of medicinal plants used in Malaysia. Volume 1. Kuala Lumpur: HMRC IMR, 2002; p. 232.
  27. Moon-ai W, Niyomploy P, Boonsombat R, Sangvanich P, Karnchanatat A. A superoxide dismutase purified from the rhizome of Curcuma aeruginosa Roxb. as inhibitor of nitric oxide production in the macrophage-like RAW 264.7 cell line. Appl Biochem Biotechnol.2012;166(8):2138-2155.
  28. Thaina P, Tungcharoen P, Wongnawa M, Reanmongkol W, Subhadhirasakul S. Uterine relaxant effects of Curcuma aeruginosa Roxb. rhizome extracts. J Ethnopharmacol. 2009;121(3):433-443.
  29. Jantan I, Rafi IAA, Jalil J. Platelet-activating factor (PAF) receptor-binding antagonist activity of Malaysian medicinal plants. Phytomedicine. 2005;12(1);88-92.
  30. Moektiwardoyo MW, Tjitraresmi A, Susilawati Y, Iskandar Y, Halimah E, Zahryanti D. The potential of dewa leaves (Gynura pseudochina (L) DC) and temu ireng rhizomes (Curcuma aeruginosa Roxb.) as medicinal herbs for dengue fever treatment. Procedia Chem. 2014;13:134-141.
  31. Reanmongkol W, Subhadhirasakul S, Khaisombat N, Fuengnawakit P, Jantasila S, Khamjun A. Investigation the antinociceptive, antipyretic and anti-inflammatory activities of Curcuma aeruginosa Roxb. Extracts in experimental animals. Songklanakarin J Sci Tech. 2006;28(5):999-1008.
  32. Pumthong G, Asawanonda P, Varothai S, et al. Curcuma aeruginosa, a novel botanically derived 5α-reductase inhibitor in the treatment of male-pattern baldness: A multicenter, randomized, double-blind, placebo-controlled study. J Dermatol Treat. 2012;23(5):385-392.